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ABSTRACT

/Many multivariate interpolation schemes require as data values of

derivatives that are not available in a practical application, and that

therefore have to be generated suitably. A specific approach to this problem

is described that is modeled after univariate spline interpolation.

Derivative values are defined by the requirement that a certain functional be

minimized over a suitable space subject to interpolation of given positional

data. In principle, the technique can be applied in arbitrarily many

variables. The theory is described in general, and particular applications

are given in one and two variables. A major tool in the implementation of the

technique is the Bzier-Bernstein form of a multivariate polynomial. The

technique yields visually pleasing surfaces and is therefore suitable for

design applications. It is less suitable for the approximation of derivatives

of a given function.
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SIGNIFICANCE AND EXPLANATION

This report addresses the problem of the interpolation of bivariate

scattered data (xi,yi,zi ) am they arise for example in the Computer Aided 0

Geometric design of the shape of a vehicle or in the representation of

measured data. Many techniques proceed by triangulating the domain and then

defining the interpolant piecewise on each individual triangle. However, such

interpolation schemes usually require as data values of derivatives that the

user is unable to supply. The report describes an approach to the generation

of such data from the civen information. It is modeled after univariate cubic

spline interpolation and consists of choosing that interpolant which minimizes

a suitable functional (modeling e.g. the strain energy of a clamped elastic

plate) over a suitable function space, subject to interpolation. The user has

so=e choice in the selection of the functional. The technique has the

advantage of yielding visually pleasant surfaces. It has the drawback that

the derivative generation is a global process that depends upon all given

data. The scheme can be considered either a method of constructing a once

differentiable interpolant to positional data, or a method of constructing

derivative values through second order that can then be used to generate a

twice differentiable surface by employing another interpolation method. The

basic ideas are also illustrated in the univariate context. -

41'

The responsibility for the wording and views expressed in this desdriptive
summary lies with MRC, and not with the author of this report.
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MULTIVARIATE SCATTERED DATA DERIVATIVE GENERATION BY FUNCTIONAL MINIMIZATION

Peter Alfeld

many miltivariate interpolation schemes require values of derivatives as

data which are not available in a practical application. For examples of such

schemes, see, e.g., Barnhill and Farmn, 1981, the papers by Alfeld and by

Alfeld and Barnhill, and other papers in the proceedings edited by Baruhill .

and Nielson, 1984, and the finite element literature. Thus, if an

interpolation problem is to be solved, derivative data ust be generated from

existing positional data.

In this paper, a particular technique for derivative generation Is

described which is modeled after univariate spline interpolation. In the

univariate case, it is well known that the interpolating spline minimizes a P

variational principle, and it has been recognized (see Dube 1975, Duchon 1976,

and Nielson 1983) that a similar property is desirable also in the

multivariate context. Minimizing an appropriate functional over as large a P

space as possible has the drawback that ususally this is difficult

computationally and that in general the result will not be a function with a

simple and convenient (e.g. polynomial) structure. In our approach, a simple

structure is forced by choosing the interplants from a class of plecewise

polynomial functions (defined over a tesselation into simplices, i.e.

intervals or triangles) such that some user specified functional is

minimized. The approach is related to the finite element method for the

solution of variational problems, and indeed many computational techniques

familiar in that context can also be used for derivative generation. The S

technique is mathematically well founded and yields visually pleasing

surfaces. This makes it suitable for desiga purposes. Its main drawback is

that the derivative generation is a global process that requires the

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112.
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constructlon and solution of a large sparse system of linear equations. After

the preprocessing stage of derivative genera.tion, however, the schemes are

local, i.e. the evaluation of the interpolant requires data only on that 0

simplex in which the data point resides

The techniques presented here can be viewed in at least two different

ways. The point of view that is reflected in the title is that they simply .0

generate derivative values at points. Also possible is the view that the

derivative generation and the interpolation are an entity that allows the user

to construct smooth interpolants to positional data, without requiring user .0

specified derivative values. From that point of view, the fact that the

derivative generation may be divorced from the interpolation, and derivatives

may be used for separate purposes (e.g. generating a smoother surface), is a .

serendipitous byproduct of the technique.

In traditional numerical analysis, one usually thinks of an interpolation

scheme as a means of approximating an underlying smooth function. This,

however, is often Inappropriate in mltivariate applications. Rather, the

attitude usually taken by designers and engineers is that one is given some

data with the objective of passing a visually pleasing surface through the 0 -

data. Indeed, in a design problem, the primitive function is the object to be

created, rather than reproduced or approximated. The designer may even change

the positional data in order to get a better surface. This is why the title

of this paper contains the term "generatlon" rather than "estimation". We are

interested not in estimating derivatives that have no meaning in the context

of the given problem, but rather in trying to determine free parameters in a

way that would satisfy a designer or engineer. This attitude is the main

reason why the question of errors is not addressed in this paper.

The paper is organized as follows: -0-
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In section 2, we develop the theoretical frame-work for the technique.

We define the notation and address the questions of invariance of the

interpolants under certain geometrical transformations, of existence and

uniqueness of the minimizing interpolant, and of the maximum degree of the

polynomials that are reproduced exactly by the method. This frame-work

applies to functions of arbitrarily many variables.

In section 3, we consider the univariate case. We describe (piecewise

cubic and quintic) Keraite interpolation and give formulas for picking the

values of the derivatives so as to inimize the norm of certain derivatives of

the interpolant. These include natural cubic and quintic splines as special

Cases.

In section 4, we go on to functions of two variables. This section is

the heart of the paper. We consider one basic interpolant (defined over a

triangulation), namely a piecewise quintic C1  interpolant that Interpolates

to gradients and Hessians (as well as to position). The interpolant has been F
long known in the finite element context.

In all cases, positional data are considered given, and derivative values

are considered parameters to be picked so as to minimize a functional. The

functional in all cases is the L2 norm of some suitably picked set of

derivatives.

In section 5, we illustrate the technique with some bivariate

examples.

-3-
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2. TH ielAME-VOitK

In this section, ye define some notation that viii be used In the

sequel. We also describe the approach in general, and observe some simple but

fundamental properties. The following sections can then be considered

specific examples for our general approach. Some of our definitions and

concepts could be formulated more generally, but we restrict them to

situations as they arise in practical applications.

We denote by D a polyhedral region in 1d that has been tesselated .

into sisplices. We do not address the question of how this tesselation may be

accomplished. See Little, 1983, for some answers to this question.

Our interpolant will be piecewise polynomial (so that integrations can be

carried out easily). We denote by m  a space of functions that aren

polynomial on each of the simplices in D and that are globally m times

continuously differentiable. The space contains all polynomials of degree up

to and including n • In one variable, Bm will not contain any highern

degree polynomials, but in more than one variable, B may contain somen

higher degree polynomials, depending upon the application.

We assume that our interpolant is required to interpolate

to N data di defined by linear functionals, thus, if p denotes the

interpolant,

(2.1) Lip - di , i -

In most applications, the Li will be point evaluations at the vertices

of the tesselation. We also assume that the interpolant contains free

L parameters p1  that we have to specify. In most applications, these

-4-
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parameters will be values of derivatives at points. We express the link

between the interpolants and the parameters.in term of linear functionals:

(2.2) Pip * , i * I,..o, .

We collect the data di  into the vector d and now'define the affine p

space that contains all candidates for the final interpolant by

A:(d) tq Bn : (2.1) and (2.2) hold where Pit Ip

Fundamental to our technique is the minimization of certain

derivatives. We consider the differentiation operator p

k 2
Dkq I ) .a-

x1 2* O
It i2 ,1 ., k  1 {,., xi i2  ik

We also use the functional defined on Bm byn

(2.3) Fq q T T Dkq
IT TI T

Here, the summation Is over all simplices in the tesselation of D and

the integration is over an individual simplex. For example, if k - 1 , we

obtain the Eucledian norm of the gradient, and if k - 2 . we obtain the

Frobenius norm of the Hessian of q

In the now defined context, of the infinitely many interpolants contained

in A!(d) , we choose that one that minimizes Fk
-



The following theorems cover some of the relevant properties of the above

approach.

pk
Tb"nerem 1: There exists a unique minimizer of Fk in An(d) for

nn• all d if and only if the only function in Am(O) piecewise of

i"*.
degree < k is the zero function.

Ismark: Thus we reduce the question of existence and uniqueness for the

minimization problem to a similar question for a much simpler Lagrange

Interpolation problem.

Tbeoren 2: If p minimizes Fk over A(d) and p is unique,n

then p is invariant under translations, isotropic rescalings, and rotations.

Theorea 3: If p minimizes Fk over m(d) ,and p is

unique, k C n , and di * Liq for some polynomial q of degree < k ,

then p q•

Proof of Tbeorem 1: The functional F is quadratic and minimizing it

requires the solution of a linear system. If d - 0 , then the linear system

is also homogeneous (since the zero function is a solution). Moreover, the -

coefficient matrix is independent of d- (as can be seen by writing the

interpolant in cardinal form). A linear system with arbitrary right hand side

possesses a unique solution if and only if the corresponding homogeneous

linear system possesses a unique solution. If the zero function is the only

function In A piecewise of degree < k , then the solution is unique as any

interpolant of a higher degree would yield a non-zero value for F .

-6-



Proof of Tbeorea 2: We consider a change of variables

a Lx+b where LTL - a2l for some Const4nt a i, th I being the

identity matrix. This class of transformations includes translations

(L - 0), isotropic rescaling (L - a , b a 0), and rotations

a a" 1 , b a 0) . We have to show that the solution of the minimisation

problem is independent under this change of variables.

Let 7(x) = p(Lx+c) . We will show that

(2.4) *pa 2Ikp.

Thus the value of the functional Fkp is proportional to F p which

establishes the theorem.

To see (2.4) requires a simple but messy manipulation of

summations. Dlp is obviously independent of b , so we may assume b = 0

We denote the (1,J) entry of L by Lij a We next see by induction that

kk

fi p(Lx + b) * r- Lrr (L +b)Wil x12** I k r-'" rJ rx, IxJ2" *xt

In the following, subscripts of p denote partial derivatives, and all

evaluations take place at Lx+b.

-7-



Using this relation, we obtain:

k
k- i L .L2. L.i2

- -... EL L .JI..- J

~~'1~~2 2 21J k212 2  J

EL L a p k 2 p
j Ok Pi~ **'* 111kK

Proof of Theorem 3: Suppose that the data dk are generated by a

polynomial q of degree < k n . Then q t Am(d) and kq assumes then

minimum possible value zero. Since the minimizer is unique we have that-0--

p-q

In the sequel, we will make use of a technique familiar from the finite

element technique (see, e.g., Strang and Fix, 1973, p.28). Rather than

integrating over the entire domain D and then differentiating with respect

to the parameters, we integrate over an individual simplex (element),

differentiate with respect to those parameters that contribute nontrivially on

the element, and in this fashion obtain-an element stiffness system. The

element stiffness systems then have to be assembled into the global stiffness
9

system, and that system has to be solved. We assume the assembly technique to

be familiar. Also, we will not address the question of how the (large,

sparse, positive definite) global stiffness system may be solved except to

point out that this is usually done by direct methods and that sophisticated

software for this purpose exists (see George and Liu, 1981).

-8- 9 _



3. UNIVAZIA APPLICATIONS

3.1 The C1  Case

Suppose we are given data (xn,fn) , n - 1,...,N , where

a 1 < x2 < <xN b "

We denote the interval [x,,x,+I ] by In  and write hn " xn+l-xn (for

n - 1,2,...,N-1) . Our objective is to interpolate to the given data, i.e. we

are looking for a function s , say, that satisfies

(3.1) s(xn) - f., for all n - 1,2,...,N

In this subsection, we require s to be in the space 3 * * i.e. the

space of all functions that can be represented as a cubic polynomial on each p

subinterval I , and that are once continuously differentiable on

1: - [a,b]. In the notation of section 2, we let di-=fi and

Pj " p'(xt) where p is the interpolant. The affine space Ai is the

space of all functions in B3  that satisfies the interpolation condition3

(3.1). The functional 0" (for k - 0,1,2,3) becomes

S

N- 1  x-
(3.2) F kp- fx .l(p ()2 dx

-9-
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To make the notation of the following results more compact, we consider the

following more general functional

o% 3
k .k

G p k z wkF Pk-O

where the wk are weight factors that can be chosen by the user. For

instance, the choice w2 - l , w0  - v w - w3  - 0 yields the natural

interpolatory cubic spline (which, remarkably, is twice continuously

differentiable everywhere on I ).

The differentiation and integration on an individual subinterval was

carried out using the symbol manipulation language REDUCE (Hearn, 1983). We

obtain the element stiffness matrix

21 a 2f and the right hand side gn C fr 2

where
1

C 3
210h

-10-



11 "22" Ahn 06 + 56h4Vl + 1680hV 2  15120 v3 S

6 4 2
a12 " a 2 1 a -3h v0 - 14ho I + 40h w2 + 15120 v 3

(3.3)

r- -j -h6 (22f3+i + 13f )wO + 42hn(fnf -fn)Wi

+ 2520h2 (f -f )w2 + 30240(f 1 -f )w3 I

1 6 4r 2 [+h ( + 13fn)vO + 42hn(fn+,-fn)wl

+ 2520h (f -f )w, + 30240(f, 1 -f )w3 I

The formulas given in (3.2) and (3.3) can be assembled into a global

stiffness system whose solution defines a piecewise cubic eraite interpolant

that minimizes the weighted derivatives defined in (3.2).

Of special interest is the case where w3  - 1 and the other weights

equal zero. The element stiffness matrix is of rank one. The assembly

procedure yields a consistent system of equations with rank deficiency one.

Thus there is a one parameter family of minimizing interpolants. That this is

so can also be recognized directly: Any piecewise quadratic interpolant would

minimize the norm of the third derivative. A quadratic polynomial has three

degrees of freedom. On the first subinterval, we have to interpolate to two

function values, retaining one free parameter. On each subsequent interval,

we have to interpolate to two function values, and also have to match the

derivative of the quadratic on the left neighboring interval, using up all

-II- S



three parameters. Thus, overall one parameter remains at our disposal. The

significance of this observation Is that quadratic precision of a cubic

Hermite scheme cannot be achieved by specifying the functional (3.2) alone.

Rather, an additional condition has to be imposed to eliminate the free

parameter. A simple approach would consist of determining the first

derivative at some grid point by using a quadratically precise interpolation

formula, and then requiring the minimizing interpolant to reproduce that

derivative.

t

3.2 The C2 Case

The development in this subsection parallels that in the preceding one,

except that we consider interpolants in B 2, and also consider second

derivatives of the interpolant at the gridpoints as parameters. The

parameters at our disposal are dn - p'(x,) and d,+N -.p"(xn) for

2a M 1,...,N . The affine space A5  is the space of all functions

2
In B5 that satisfy the interpolation condition (3.1).

Similarly as before, we consider the general functional _

5

k'0I wk

where the Fk are defined in (3.2). Carrying out the integration and

differentiation on a subinterval I. and writing h - hn ,

df - f+ - fn P' P P'(xn) , P" P"(xn)

yields the element stiffness equation:

-12-



all 812 813 in14 pu

8128a22 a23 a24 ;2

S1 2 33 a34 P34 1 , 53

a14 a24 a34 a44 ;0+1  £14

whera

*11 - 832c0 + 286c, + 384c2 + 64c3 + 456c4 + 216c5)h

2
a12 - 69c0 + 21c1 + M22 + 12c3 + 78c4 + 36c 5)h

813 0 -3c o 16c, + 36c3 + 444c4 + 216c.)h

2
a1 w ( 52c0 + 6c1 - 7c c 2c4 - 36c5)h

a2 ' ( 6c0 + 2c + 6c2 + 3c3 + 14c4 + 6c5)h 
3

8 -52c- 6c1  80+ 72c4 + 36 5)h

823in " o 0 o+ Bc2 + 0c3- 10 o)1

a28 *(63c +288 +34 6c64o
330 c2 '3 +45c 4 2IN 5

834 a ( 69 co - 21cr I 22c2 -12c3 -7804 - 36o5)h2

a4 '( 6o + 2c 1+ 6c2 + 3c3 + 1404 + 6c,)h3

9a (-1812f341 - 3732fnc + (270ci + 6O0c2 + 120c 3 + 90004 + 432c 5 )(f 1 -I fn

9a - 3f41 - 281f )co + (15he1 + 30hc2  + 10e3 50hc4 + 72hc5 )(fn~l - fd)]

g3 a (3732fn~1 + 181 2f n)c 0 + (270c I + 6
00c I + 120c3 + 900c4 + 432c5 )(f3.,. - fn)

-4 b ((-281f3~l - ISIfn)oO -(15hec 1 + 30hc2 + 20he 3 + 150hc4 + 72hc5)(fn~l - fd)

___2__ -4 -6 -8

c a h 31' 1, 32 c 6h v3, 04 48h W4- c'- 1200h W5.

-13-



The following cases are of special interest:

w- 8I12 The element stiffness matrix is non-singular. The unique

solution for N - I is the linear interpolant. In general, the Interpolant

minimizes the norm of the second derivative over the space B2 which contains5

the Interpolating natural cubic spline. Since the spline minimizes the norm

of the second derivative over the larger space containing all

2
piecevise C functions that are once differentiable at the grid points, the

plecevise quintic Hermite interpolant generated here actually is the

interpolating natural cubic spline.

vi - 63i: The element stiffness matrix is of rank 3 • In the case of

N - 2 any interpolating quadratic will minimize the functional Hk . In the

case N - 3 , the interpolant is the unique interpolating quadratic which

renders C2 zero. The global stiffness matrix is non-singular whenever

N > 2 I In that case, the interpolant is the natural quintic spline, which,

remarkably, is four times continuously differentiable everywhere in I

w 1 6 41z The global stiffness matrix is rank deficiency 2 for any value

N > 1 . Any piecewise cubic interpolant will render 1k zero.

wI - i The global stiffness matrix is of rank deficiency N+3 for

any N > 1 * Any piecewise quartic interpolant will render the value of

sero.

-14-
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4. IThAUT AMPICAXIOUS

4.1 Barycetric Coordinates and the SAIier form of a Polynomial

Conceptually, we proceed as in the univariate case. Uovever, the

algebraic manipulations grow much more complicated. The problem becomes

tractable only by using barycentric coordinates and the Be"aier form of a

polynomial. We develop these concepts for the bivariate case. The

generalization to more than two variables Is straightforward.

We restrict our attention to a general triangle T with vertices

V1 V2 *and V3 *and express the location of a point P In T by

3 3
(P.1)b * V b where I b.1

The bi are the barycentric coordinates of P .They are determined

uniquely by the linear system (4.1) provided the underlying triangle T in

non-degenerate (which we will assume throughout).

We write a polynomial p of degree n In the Bezier form

(4.2) p I at c b rb 9b

r+$+t-n 11 a

-15-



The computation of the element stiffness system requires the following

two Ingredients:

1. Spatial differentiation of the Dozier form of a polynomial.

2. Integration of the Bezier form over a general triangle.

We address each ingredient in turn:

4.1.1 Spatial Differentiation of the Bizier form of a Polynomial.

We let P denote a spatial differentiation operator, i.e. V -- for

Do
some direction e . We consider the general Bzier form given by (4.2).

Then Pp is a polynomial of degree n-i which can be written in the

form

(n-l)!- krst
Vp c b bCst -12o3

r+s+t-n-1 I~ 1 o

It can be easily verified (see Farn, 1980) that

L

cret nlcr+,s,tVb I + Vb+ C r,b,t+ b]

-16-

,a.



In our application, we are interested in differentiating p several

timeS in different directions. For later reference ve list the relevant

forualas. Let V1", i a 1,...,k , denote spatial directional derivatives 0

(such an the partial derivatives with respect to x and y). Then

- (u-k)t 2b3
rts+t-n-k tIslt! rot

fthere

(4.3) c (0) cCrot m rat

and

(4.4) €( 1+ 1 )  (n-i)[c (1 ) V b+ c(i) V b (i) V b
rat r+l,e,t i+1 1 r,s*l,t 1+1 2 r,s,t+l i+1 3

for i - 0,,.,k

4.1.2 Integration of the Bizier form over a General Triangle

Let p be defined by (4.2). The polynomial is defined in terms of

barycentric coordinates, but integration is required in terms of cartesian

coordinates. A simple change of variables (see, e.g., Lang, 1968, p.4 2 1) 0

yields for any integrable function f

-17-
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I 1-b
;r f(P)dxdy - a(T)f r f(blVl+ b 2v (l-bl-b 2 )V3 )db2 db1mmT 20 +012

Where T is the triangle of interest and a(T) is twice the area of T

Now let p denote a general Bezler representation given by (4.2).

Using the substitution b3  1 1-b1-b2 , it is easy to see by induction and

Integration by parts that

I11-b,.- pdb2db I (n+1)(n+2) I Cat

r+s+t-n

I--

I. -18



4.2 A Qe based Interpolant

The underlying interpolant here Is the Diser form of Q18 a a reduced

quintic interpolant requiring function values, gradients, and Hessians at the

vertices of T . The overall plecewise qutntic interpolant Is continuously

differentiable everywhere in the triangulation. For the derivation of an

explicit expression for Qj8 see Barnhill and Faern, 1981. For completeness

and reference we list the relevant formulas, also Introducing the notation

used In the sequel. The Interpolant is given by:

(4 5) Q " 51t d r-s2t

r+s+t-5 rTl drt b1 b2 b3

where:

(4.6) d5 0 - F , d0 50 - 2' d00 5 - 13

31 +1 d-o1 ~w a7 + d 5

410" l3,1 + ds00 . d40 1  5 F2,1 d5 0 , d14 0 "53,2 + d0 50

(4.7)

d 1 + d - * *
04.1 5 1,2 d050  d 0 14  5 1 1,3 +dOO 5  d10 4  5 2,~3 +d 005d,. +  Ido -do 0." + J F, + 2do

1 1

d3 20 - YOF 133,1 + 2d4 1 0 - dso0 . d2 3 0 +2 33,2 + 2d14 0 - 4o50

032 FI1 , + 2d04 1  d0 50 * d0 2 3  2 0 11,3 + 2d 014 005

-19-



20 3  T F22 , 3 + 2d 0 " d0 0 5  d30 2 O z22,1 + 2d4 0 1 -50

d3 11  2 20 p23,1 + d4 10 + d50  0 d 0

oo

(4.9)
-1131 0 T 13,2 + d14o + do41 -o5o

20 12,3 d14 d04 do05

113 2

122 6031F2 - 6F3,2 + 6(5s1 - I)FI,2 -2F13 ,2

+ (5s1 - 2)FII,2 - 60(21 - )F3 + 6(5@1 - 41FI 3

+ 6F2,3 - (5s1 - M)11,3 - 2F12,31

(4.10)

d2 12 - j- [6082F3 - 6FI,3 + 6(552 - 1)72,3 - 2712,3

+ (5s - 2)22,3 - 60(s2 - O)FI + 6(562 - OF 2,1

+ 6F3,,1 - (52 - W22.1 - 2F 23,11

1  60s F - 62 + 6(583 - 1)F3,1 - 2F23,1

d221 "'[60 3 1 -62,1

+ (5s3 - 2)F3 3 ,1 - 60(s3 - O)F2 + 6(53 - OF3,2

-20-



+ 671,2 - (553 - 313,2 - 213,21

and:

(4.11)

±1 Q(V1)

(4.12)

Fk, L " (V I)

(4.13)
2

Fj, 8 -Q-- (V)
Fjk, I elk

(4.14) T
01+1 a

I Te

and a V1+1-Vi  (where index arithmetic is modulo 3).

Thus, the data in (4.11) are given positional values, the parameters in

(4.12) and (4.13) are derivatives (of the global interpolant) at vertices

which are to be determined so as to minimize a suitable functional defined

below, and the parameters defined in (4.14) are projections of edges onto
I

other edges that ensure global differentiability of the 
interpolant..

It is important to keep in mind that ultimately we wish to generate

derivative data (i.e. gradients and Hessians) at all vertices of a given

triangulation. The local Interpolant Q is most conveniently expressed In
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terms of derivatives in the direction of edges (which would be inappropriate

on a neighboring triangle utilizing common vertex data). Hence we need to

express edge derivatives in terms of partial derivatives In x and y * This

is accomplished by writing:

(4.15) 1 " (Vi). u " V2Q(v1 )

and

T T
(4.16') P g, F a e l

k,i k I jk,i j k

We now proceed as in section 3. We consider the space B of all

functions that can be expressed as Q18 on each triangle, and that are

globally once continuously differentiable. (Notice that this set contains all

quartic polynomials, but only some quintic polynomials). The affIne

space Ai of interest is the set of all functions s in 14 that satisfy the

interpolation requirement

(4.17) 8(x ,y ) f (- F , J c 11,2,3} on a particular triangle)
i i i a

We want to minimize the functional 1k defined in (2.3) over B4 * The

parameters at our disposal are the values of gradients and Hessians at the
L

gridpoints (xi,yi)
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In addition to the items covered in general in section 4.1, we used to

differentiate the interpolant with respect to the parameters. As before, we

consider a single element, I.e. a single triangle. On each triangle, ws have 0

15 parameters at our disposal. We denote by v - [vi ] the vector of these

parameters. Because of the square under the integral in (2.3), the

contribution #(v) . say to Fl from a single triangle is a quadratic

function of v . This implies that we can write

S

I T T

(v)-- v Av + s v + c
2

where A is a symmetric positive semidefinite 15 by 15 matrix with entries

a1j , g is a vector with entries gi , and c is a constant. The

contribution of 4(v) to the global stiffness system is determined by A and

g • Since A is the Hessian of *(v) we can write

2P

(4.19) 
2

3 v i W

Once the a i have been determined, the g can be computed by

substituting the unit vectors for v , thus

1
9: #(e ) 2 a11  -
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(where a, is the unit vector with I in the i-th place and zeros

elsewhere, and c - #(0)). It is therefore crucial to be able to carry out

the differentiation (4.19). Applying.the product rule twice yields

- 2ff -i:- Q )dxdy

The differentiation of Q with respect to the entries of v can be carried

out by differentiating in the recursion formulas (4.3) and (4.4).

Differentiating in (4.4) yields

I

d (5-i) d(1 ) D b
OvI  rat [v I  r+l,st 1+1

+ d() D b
+ i rs+l,t D+I

+avI r,s,t+l Di+1b31

The recursion is 4'ntialized by differentiating in (4.3). The

derivatives can be derived easily from the recursions (4.6) through (4.16).

However, the situation is complicated by the fact that the interpolant is

expressed in terms of barycentric coordinates, whereas the derivatives L

entering as data are cartesian derivatives. Computational efficiency can be

gained by observing that most of the derivatives obtained from (4.4) are zero,

and by avoiding having the program multiply by the zero derivatives.
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For convenience, the non-zero derivatives are listed In the appendix.

They were computed using the symbol manipulation language REDUCE (see learn,

1973). In order to avoid typing and type-setting errore, the REDUCE output

has been reproduced photographically.

p

p

p
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5. SIZVAIXMA UANPLS

In this section, we illustrate the technique described in the preceding

sections by a simple bivariate example. In a typical application, no

underlying primitive function will be available. However, for the sake of

illustration we use a primitive first introduced by Franke, 1982. The surface

exhibits several phenomena (two maxima, one minimum, and one saddle point) 0

that may occur in surface defined by a true data set. The primitive function

is given by

f(xy) e3 -((9x-2) 2 + (9y-2)2)/4

+ u + ( 9 yT e)/O

++

2

I -((9x-4)2 + (9y-7)2)
5

Approximations of f on the unit square were constructed from positional

values at only 36 points. Figure I shows a contour plot of f together with

the data points and the triangulation of the data. The triangulation was

constructed using Little's method described in Barnhill, 1977.

Figure 2 shows a hidden line plot of f . All subsequent plots are

drawn as viewed from the same point and with the same vertical scale. Figures

3 through 6 show the interpolants obtained by minimizing the first through

fourth derivatives respectively. Minimizing second or third derivatives
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yields a very pleasing surface. The interpolant Is somewhat shallower than

the primitive function. This is due to the fact that none of the data points

Is placed directly at.the extrema, (cf, Figure 1.) which are therefore S

poorly represented by the interpolants.

Minimizing the gradient yields a surface that Is unlikely to be useful

for design applications. However, it remarkably resembles a scene one might

encounter in a physical mountain range. It is intriguing to speculate that

minimizing the gradient may sometimes be appropriate for generating

topographical maps since erosion effects are the harsher the steeper the

terrain. Minimizing fourth derivatives generates large undulations and Is not

a good general purpose method.

-

p

p
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Primitive Funxction -- Contours and Triangulation

FIGURE
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Primitive Functicn

FIGLME
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Minimization of let derivatives
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Minimizatimx of 2nd derivatives

FIGURE 4
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Mi4nimizaticl of 3rd derivatives

........
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?,Unmization of 4th derivatives

IIUR 6
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COEcLUSIONS

A technique for derivative generation has bee proposed. It Is

particularly useful in a multivariate context. Its main properties are:

1. The preprocessing stage of derivative generation requires the construction

and solution of a large linear system. However, this is closely related to

the finite element method, and existing well developed computational

techniques can be employed.

2. Once derivatives have been generated, the interpolant is local.

3. The formulas presented here apply to the univariate and the bivariate case

only. However, conceptually the extension of the technique to other basic

Interpolants Is straigbtforvard. The particular interpolants considered in

this paper are piecewise polynomial functions. This is convenient since the

technique calls for the integration of functions with a similar structure as

the interpolant. In principle, interpolants with a non-polynomial structure

can also be used. They would necessitate either the development of special

Integration formulas or the uae of numerical (multivariate) integration.

4. Primarily, our technique is intended to be used as a means of constructing° 1

visually pleasing surfaces. The special application described in section 3.

can be considered a bivariate C1  interpolation scheme that requires only

CO  data. This is remarkable in view of the fact that most existing local 9 -

multivariate interpolation scheme require data of at least the same degree of

smoothness as the degree of smoothness of the interpolant. However, the

scheme also supplies values of derivatives at certain points. These
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derivative values can be used for other purposes. For example, the gradients

and Hessians generated by minimizing our piepewise quintic C1  interpolant

can be used as data for the second of the two piecewise rational C2

Lnterpolants described in Alfeld, 1984a. That interpolant would of course not

possess the minimization property of the polynomial interpolant.

-35
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APP ENDIX

Derivatives of the coefficients of Q with respect to the

derivative parameters

The following list is computer generated which accounts for the awkward

notation:

T 2 Qxx Qxy

Qxy Qyy

a s l, s - 2, a s 3

T T T
e - elx~elyI , e - [e2x~e2yJ , - [e3xe3yl

1 2 3

d *d211, d -d121, d -d112
211 121 112

Only non-zero derivatives are listed.

differentiation with respect to Qx(vl):

d212: (5*e2x*92 - 4*e2x + e3x)110

d221: ( - e2x + 5*e3x*s3 -e3x)/1O

d302: ( - 2*e2x)/5

d311: (- e2x + e3x)/5

d320: (2*e3x)/5

d40O1: (-e2x)/5

d410: e3x/5
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differentiation with respect to Qy(vl):

d212: (5*e2y*s2 -4*e2y + e3y)/1O

d221: ( - e2y + 5*e3y*s3 -e3y)/1O

* ON0: ( - 2*e2y)/5

d3l11: ( - e2y + e3y)/5

d320: (2*e3y)/5

* d40l: (-e~y)/5

d4l0: e3y/5

differentiation with respect to Qxx(vl):

*d212: (e2x*( - 5*e2x*s2 + 3*e2x - 2*e3x))160

d221: (e3x*( - 2*e2x + 5*e3x*s3 - 2*e3x))/60

ON0: e2x**2120

d311: ( e2x*e3x)/20

d320: e3x**2120

differentiation with respect to Qxy(vl):

d212: ( -
5*e2x*e2y*s2 + 3*elx*e2y - e2x*e3y -e2y*e3x)/30e

d221: ( -e2x*e3y - e2y*e3x + 5*e3x*e3y*93 -2*e3x*e3y)/30

4 302: (e2x*e2y)I1O

d311: (-(e2x*e3y + e2y*e3x))/20

4320: (e3x*e3y)I1O
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differentiation with respect to Qyy(vl):

d212: (e2y*( - 5*e2y*s2 + 3*e2y - 2**3y))/6O

d221: (e3y*( - 2*e2y + 5*e3y*s3 - 2ey)6

d302: .2y**212O

4311: (-e2y*e3y)/2O

d320: e3y**2/2O

differentiation with respect to Qx(v2):

d032: (2*elx)/5

d041: elx/5

4122: (5*elx~sl - elz - 3x)/1O

4131: (elx - e3x)/5

d140: (-e3x)/5

d221: (elx + 5*e3x*,3 - Ae3x)/1O

d230: (-2*e3x)15

differentiation with respect to Qy(v2):

4032: (2*ely)/5

d041: ely/5

4122: (5% ely*sl -ely -e3y)/10

4131: (ely - e3y)15

4140: (-e3y)/5

d221: (ely + 5*e3y*s3 - *e3y)/1O

d230: (-2*e3y)/5
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differentiation with respect to Qxx(v2):

d032: elx**2/20

d122: (elx*(5*elx*sl - 2*elx -2**3x))160

dl3l: ( -ejx**3x)/20

d221: (e3x*( - 2*elx - 5e3x~s3 + 3*e3x))I6O

d230: e3x**2I2O

differentiation with respect to Qxy(v2):

d032: (elx*ely)/1O

d122: (S*elx*ely*sl - 2*elx*ely - elx**3y -ely*e3x)/30

dl3l: ( - (elx*e3y + ely~e3x))/20

d221: ( - elx*e3y - ely*e3x - 5*e3ic*e3y*s3 + 3*e3x*e3y)/30

d230: (e32c*e3y)/1O

* differentiation with respect to Qyy(v2):

d032: ely**2120

d122: (ely*(S*ely*sl' 2*ely -'2*e3y))/60

dl31l ( ely~e3y)/20

d221: (e3y*( - 2*ely -
5*e3y*s3 + 3*e3y))/60

d230: e3y**2/20
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differentiation with respect to Qx(v3):

C01O ( - 0lx4/5

d023: ( - 2*elx)/5

d104: e2x15

4113: (-elz + *2x)/5

4122: (5*elx*sl - 4Aelx + e2x)/1O

d203: (2*e2x)/5

d212: C-elx + 5**2x*e2 - e2x)/10

differentiation with respect to Qy(v3):

d014:- ( - .ly)/5

4023: ( - 2*ely)/5

4104: e2y15

d113: C-ely + e2y)IS

d122: (5*ely*sl - AOely + *2y)/lO

d203: (2*e2y)f 5

d212: s ly + 5*.2y~s2 - e2y)/1O

differentiation with respect to Qxx(v3):

4023: elx**2/20

d113: (-elx*e2x)/20

4122: (elx*( - 5*elx*sl + 3*elx - 2*e2x))/60

d203: e2x**2120

d212: (e2x*( 2*elx + 5*e2x*s2 - 2*e2z))/60
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differentiation with respect to Qxy(v3):

d023: (elx*ely)/1O

d113: ( - Celz*e2y + ely*e2x))/20

d122: ( - 5*elx'ely 5sl + 3*elx*ely - elx*.2y -ely~e2x)/30

4203: (e2x**2y)I1O

4212: (-elx*e2y - ely*e2x + 5*e2z*e2y*s2 -2*e2x*e2y)/30

differentiation with respect to Qyy(v3):

4023: e17**2/20

d113: C-ely~e2y)/20

4122: (ely*( -5'ely~hl + 35ely - 2*e2y))/6O

4203:. e2y**2/2O

d212: (e2y*( -2*ely + 5*e2y*@2 - 2*e2y))/6O

L

-44-



SECURITY CLASSIICATION O THIS PAGE Whin Date MI_ _ _R _I___e_ _--REPORT DOCMENTATION PACE Bl"Z CMPLTINGsc FOR

1. REPORT NUMBUR ' .GOVT ACCESON NO. - '11CIPIRNT' I ATAL.OG NUMBER

IL TITL.E (mid 2ukf11e) 8. TYPE or REPORT a PERIOD COVERED

MULTIVARIATE SCATTERED DATA DERIVATIVMSummary Report - no specific
GEN., T ION B S NC TIONe A T MINIMIZATON reporting period

GENERATION BY FUNCTIONAL MINIMIZATION -4. PERFOMNO ORe. REPORT NUMSER

7. AUTNOR(.) s. CONTRACT OR GRANT NUMEER( )

Peter Alfeld DAAGZ9-8o-C-00 41
DE-AC02-82ER12046 AOOO S

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. AMEL ENT PROJECT, TASKAM A 11WOK UNIT NUMGIERS

Mathematics Research Center, University of Work Unit NUber 3 -
610 Walnut Street Wisconsin Numerical Analysis and
Madison. Wisconsin 53706 scientific Computing

II. CONTROLLING OPICE NAME AND ADDRESS IS. REPORT DATE

See Item 18 below. June 1984
IS. NUMER OF PAGES

44
14. MONITORING AGENCY NAME IA ODORESI(t El9emt *au CoRIt6alilu OfRf.) 15. SECURITY CLASS. (of thli RepoM)

UNCLASSIFIED
I,. DEkC A'SPICATION/DOWNGRADING 0

1. DISTRIBUTION STATEMENT (of Ohie RXort)

Approved for public release; distribution unlimited.

p

17. DISTRIBUTION STATEMENT (of do bsbacle ontaard In Block 20, It dfffrfnt ftm Repolr)

IS. SUPPLEMENTARY NOTES
U. S. Army Research Office Department of Energy
P. 0. Box 12211 Washington, D. C. 20545
Research Triangle Park
North Carolina 27709

1S. KEY WORDS (Continue on rovwee *ide It neceommy and Identify by block member)
Scattered Data
Computer Aided Geometric Design
Bivariate Interpolation
Derivative Generation

20. ABSTRACT (Contlimu on rever@* side If neceeear" and Identify by block mmber)
Many multivariate interpolation schemes require as data values of deriva-

tives that are not available in a practical application, and that therefore

have to be generated suitably. A specific approach to this problem is

described that is modeled after univariate spline interpolation. Derivative

values are defined by the requirement that a certain functional be minimized

D ORM 1473 EDITION OF I NOV 5 IS OBSOLETE
SCRCJAN UNCLASSIIED
SECURITY CLASSIFICATION OF THIS PACE (When Dae Entered)



20. ABSTRACT - cont'd.

over a suitable space subject to interpolation of given positional data. In

principle, the technique can be applied in arbitrarily many variables. The

theory is described in general, and particular applications are given in one

and two variables. A major tool in the implementation of the technique is the

Bezier-Bernstein form of a multivariate polynomial. The technique yields

visually pleasing surfaces and is therefore suitable for design applications.

It is less suitable for the approximation of derivatives of a given function.

-9.

a S_



Is
It 10

Ail

Aw m
oe0

6,JL

wi0

.4

Tr

9; .4- As*~

46 *K 4 .

awl

I. 
_____


